Emergent self-organization in active materials
نویسندگان
چکیده
منابع مشابه
ETTO: Emergent Timetabling by Cooperative Self-organization
Cooperation is a means for multi-agent systems to function more e ciently and more adaptively. Cooperation can be viewed as a local criterion for agents to self-organize and then to perform a more adequate collective function. This paper mainly aims at showing that with only local rules based on cooperative attitude and without any global knowledge, a solution is provided by the system and loca...
متن کاملSpatiotemporal order and emergent edge currents in active spinner materials.
Collections of interacting, self-propelled particles have been extensively studied as minimal models of many living and synthetic systems from bird flocks to active colloids. However, the influence of active rotations in the absence of self-propulsion (i.e., spinning without walking) remains less explored. Here, we numerically and theoretically investigate the behavior of ensembles of self-spin...
متن کاملExperimental econophysics: Complexity, self-organization, and emergent properties
Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal th...
متن کاملHierarchical self-organization of cytoskeletal active networks.
The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system ...
متن کاملEmergent behavior in active colloids
Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how artificial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Current Opinion in Cell Biology
سال: 2016
ISSN: 0955-0674
DOI: 10.1016/j.ceb.2016.02.020